Cryopreservation Maintains Functionality of Human iPSC Dopamine Neurons and Rescues Parkinsonian Phenotypes In Vivo

Autor: Dustin R. Wakeman, Benjamin M. Hiller, David J. Marmion, Christopher W. McMahon, Grant T. Corbett, Kile P. Mangan, Junyi Ma, Lauren E. Little, Zhong Xie, Tamara Perez-Rosello, Jaime N. Guzman, D. James Surmeier, Jeffrey H. Kordower
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Stem Cell Reports, Vol 9, Iss 1, Pp 149-161 (2017)
Druh dokumentu: article
ISSN: 2213-6711
DOI: 10.1016/j.stemcr.2017.04.033
Popis: A major challenge for clinical application of pluripotent stem cell therapy for Parkinson's disease (PD) is large-scale manufacturing and cryopreservation of neurons that can be efficiently prepared with minimal manipulation. To address this obstacle, midbrain dopamine neurons were derived from human induced pluripotent stem cells (iPSC-mDA) and cryopreserved in large production lots for biochemical and transplantation studies. Cryopreserved, post-mitotic iPSC-mDA neurons retained high viability with gene, protein, and electrophysiological signatures consistent with midbrain floor-plate lineage. To test therapeutic efficacy, cryopreserved iPSC-mDA neurons were transplanted without subculturing into the 6-OHDA-lesioned rat and MPTP-lesioned non-human-primate models of PD. Grafted neurons retained midbrain lineage with extensive fiber innervation in both rodents and monkeys. Behavioral assessment in 6-OHDA-lesioned rats demonstrated significant reversal in functional deficits up to 6 months post transplantation with reinnervation of the host striatum and no aberrant growth, supporting the translational development of pluripotent cell-based therapies in PD.
Databáze: Directory of Open Access Journals