GENI: A web server to identify gene set enrichments in tumor samples

Autor: Arata Hayashi, Shmuel Ruppo, Elisheva E. Heilbrun, Chiara Mazzoni, Sheera Adar, Moran Yassour, Areej Abu Rmaileh, Yoav D. Shaul
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Computational and Structural Biotechnology Journal, Vol 21, Iss , Pp 5531-5537 (2023)
Druh dokumentu: article
ISSN: 2001-0370
DOI: 10.1016/j.csbj.2023.10.053
Popis: The Cancer Genome Atlas (TCGA) and analogous projects have yielded invaluable tumor-associated genomic data. Despite several web-based platforms designed to enhance accessibility, certain analyses require prior bioinformatic expertise. To address this need, we developed Gene ENrichment Identifier (GENI, https://www.shaullab.com/geni), which is designed to promptly compute correlations for genes of interest against the entire transcriptome and rank them against well-established biological gene sets. Additionally, it generates comprehensive tables containing genes of interest and their corresponding correlation coefficients, presented in publication-quality graphs. Furthermore, GENI has the capability to analyze multiple genes simultaneously within a given gene set, elucidating their significance within a specific biological context. Overall, GENI's user-friendly interface simplifies the biological interpretation and analysis of cancer patient-associated data, advancing the understanding of cancer biology and accelerating scientific discoveries.
Databáze: Directory of Open Access Journals