Autor: |
Julia Weissensteiner, Christian Molitor, Silvija Marinovic, Lisa Führer, Syed Waqas Hassan, Olly Sanny Hutabarat, Andreas Spornberger, Karl Stich, Johanna Hausjell, Oliver Spadiut, Christian Haselmair-Gosch, Heidi Halbwirth |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Plants, Vol 10, Iss 9, p 1956 (2021) |
Druh dokumentu: |
article |
ISSN: |
2223-7747 |
DOI: |
10.3390/plants10091956 |
Popis: |
Malus × domestica (apple) accumulates particularly high amounts of dihydrochalcones in various tissues, with phloridzin (phloretin 2′-O-glucoside) being prevalent, although small amounts of 3-hydroxyphloretin and 3-hydroxyphloridzin are also constitutively present. The latter was shown to correlate with increased disease resistance of transgenic M. × domestica plants. Two types of enzymes could be involved in 3-hydroxylation of dihydrochalcones: polyphenol oxidases or the flavonoid 3′-hydroxylase (F3′H), which catalyzes B-ring hydroxylation of flavonoids. We isolated two F3′H cDNA clones from apple leaves and tested recombinant Malus F3′Hs for their substrate specificity. From the two isolated cDNA clones, only F3′HII encoded a functionally active enzyme. In the F3′HI sequence, we identified two putatively relevant amino acids that were exchanged in comparison to that of a previously published F3′HI. Site directed mutagenesis, which exchanged an isoleucine into methionine in position 211 restored the functional activity, which is probably because it is located in an area involved in interaction with the substrate. In contrast to high activity with various flavonoid substrates, the recombinant enzymes did not accept phloretin under assay conditions, making an involvement in the dihydrochalcone biosynthesis unlikely. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|