Autor: |
Tingting Yan, Sanqiao Yao, Weidong Wu, Yingzheng Zhao, Cheng Xiong, Meiyu Chang, Qiyu Gao, Xianwen Yi, Guangcui Xu |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
BMJ Open Diabetes Research & Care, Vol 9, Iss 1 (2021) |
Druh dokumentu: |
article |
ISSN: |
2052-4897 |
DOI: |
10.1136/bmjdrc-2021-002260 |
Popis: |
Introduction Diabetic nephropathy (DN) develops in about 40% of patients with type 2 diabetes and remains the leading cause of end-stage renal disease. The mechanisms of DN remain to be elucidated. Oxidative stress is thought to be involved in the development of DN but antioxidant therapy has produced conflicting results. Therefore, we sought to define the role of antioxidant in retarding the development of DN in this study.Research design and methods We generated a new antioxidant/diabetes mouse model, LiasH/HLeprdb/db mice, by crossing db/db mice with LiasH/H mice, which have overexpressed Lias gene (~160%) compared with wild type, and also correspondingly increased endogenous antioxidant capacity. The new model was used to investigate whether predisposed increased endogenous antioxidant capacity was able to retard the development of DN. We systemically and dynamically examined main pathological alterations of DN and antioxidant biomarkers in blood and kidney mitochondria.Results LiasH/HLeprdb/db mice alleviated major pathological alterations in the early stage of DN, accompanied with significantly enhanced antioxidant defense. The model targets the main pathogenic factors by exerting multiple effects such as hypoglycemic, anti-inflammation, and antioxidant, especially protection of mitochondria.Conclusion The antioxidant animal model is not only very useful for elucidating the underlying mechanisms of DN but also brings insight into a new therapeutic strategy for clinical applications. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|