Unsupervised Indoor Positioning System Based on Environmental Signatures

Autor: Pan Feng, Danyang Qin, Min Zhao, Ruolin Guo, Teklu Merhawit Berhane
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Entropy, Vol 21, Iss 3, p 327 (2019)
Druh dokumentu: article
ISSN: 1099-4300
DOI: 10.3390/e21030327
Popis: Mobile sensors are widely used in indoor positioning in recent years, but most methods require cumbersome calibration for precise positioning results, thus the paper proposes a new unsupervised indoor positioning (UIP) without cumbersome calibration. UIP takes advantage of environment features in indoor environments, as some indoor locations have their signatures. UIP considers these signatures as the landmarks, and combines dead reckoning with them in a simultaneous localization and mapping (SLAM) frame to reduce positioning errors and convergence time. The test results prove that the system can achieve accurate indoor positioning, which highlights its prospect as an unconventional method of indoor positioning.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje