Force Control of a Shape Memory Alloy Spring Actuator Based on Internal Electric Resistance Feedback and Artificial Neural Networks

Autor: Nathan L.D. Sarmento, José Marques Basílio, Maxsuel F. Cunha, Cícero R. Souto, Andreas Ries
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Applied Artificial Intelligence, Vol 36, Iss 1 (2022)
Druh dokumentu: article
ISSN: 0883-9514
1087-6545
08839514
DOI: 10.1080/08839514.2021.2015106
Popis: This paper presents a study of the resistive behavior of a Shape Memory Alloy spring, with a focus on the application of electrical resistance feedback in control systems. Artificial Neural Networks of different topologies were designed to learn the relation between spring electrical resistance and the force exerted. The feedback between layers in Neural Networks is demonstrated to be a key parameter in learning the non-linear and hysteretic behavior of Shape Memory Alloys. Experiments with closed-loop systems showed that shape memory alloy springs generated forces that converged satisfactorily to the desired reference values. The scientific contribution of this work is the use of electrical resistance variation as feedback for controlling the spring force, eliminating the use of an external force sensor. Neural networks were used for both, the sensing process and the system control; in that way the nonlinear and hysterical behavior of the shape memory alloy actuator was well considered.
Databáze: Directory of Open Access Journals