Force Control of a Shape Memory Alloy Spring Actuator Based on Internal Electric Resistance Feedback and Artificial Neural Networks
Autor: | Nathan L.D. Sarmento, José Marques Basílio, Maxsuel F. Cunha, Cícero R. Souto, Andreas Ries |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Applied Artificial Intelligence, Vol 36, Iss 1 (2022) |
Druh dokumentu: | article |
ISSN: | 0883-9514 1087-6545 08839514 |
DOI: | 10.1080/08839514.2021.2015106 |
Popis: | This paper presents a study of the resistive behavior of a Shape Memory Alloy spring, with a focus on the application of electrical resistance feedback in control systems. Artificial Neural Networks of different topologies were designed to learn the relation between spring electrical resistance and the force exerted. The feedback between layers in Neural Networks is demonstrated to be a key parameter in learning the non-linear and hysteretic behavior of Shape Memory Alloys. Experiments with closed-loop systems showed that shape memory alloy springs generated forces that converged satisfactorily to the desired reference values. The scientific contribution of this work is the use of electrical resistance variation as feedback for controlling the spring force, eliminating the use of an external force sensor. Neural networks were used for both, the sensing process and the system control; in that way the nonlinear and hysterical behavior of the shape memory alloy actuator was well considered. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |