Jacobi Stability for T-System

Autor: Florian Munteanu
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Symmetry, Vol 16, Iss 1, p 84 (2024)
Druh dokumentu: article
ISSN: 2073-8994
81909470
DOI: 10.3390/sym16010084
Popis: In this paper will be considered a three-dimensional autonomous quadratic polynomial system of first-order differential equations with three real parameters, the so-called T-system. This system is symmetric relative to the Oz-axis and represents a special type of the generalized Lorenz system. The approach of this work will consist of the study of the nonlinear dynamics of this system through the Kosambi–Cartan–Chern (KCC) geometric theory. More exactly, we will focus on the associated system of second-order differential equations (SODE) from the point of view of Jacobi stability by determining the five invariants of the KCC theory. These invariants determine the internal geometrical characteristics of the system, and particularly, the deviation curvature tensor is decisive for Jacobi stability. Furthermore, we will look for necessary and sufficient conditions that the system parameters must satisfy in order to have Jacobi stability for every equilibrium point.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje