Jacobi Stability for T-System
Autor: | Florian Munteanu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Symmetry, Vol 16, Iss 1, p 84 (2024) |
Druh dokumentu: | article |
ISSN: | 2073-8994 81909470 |
DOI: | 10.3390/sym16010084 |
Popis: | In this paper will be considered a three-dimensional autonomous quadratic polynomial system of first-order differential equations with three real parameters, the so-called T-system. This system is symmetric relative to the Oz-axis and represents a special type of the generalized Lorenz system. The approach of this work will consist of the study of the nonlinear dynamics of this system through the Kosambi–Cartan–Chern (KCC) geometric theory. More exactly, we will focus on the associated system of second-order differential equations (SODE) from the point of view of Jacobi stability by determining the five invariants of the KCC theory. These invariants determine the internal geometrical characteristics of the system, and particularly, the deviation curvature tensor is decisive for Jacobi stability. Furthermore, we will look for necessary and sufficient conditions that the system parameters must satisfy in order to have Jacobi stability for every equilibrium point. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |