Existence of stable periodic solutions of a semilinear parabolic problem under Hammerstein-type conditions

Autor: Maria do Rosário Grossinho, Pierpaolo Omari
Jazyk: angličtina
Rok vydání: 1999
Předmět:
Zdroj: Electronic Journal of Qualitative Theory of Differential Equations, Vol 1999, Iss 9, Pp 1-24 (1999)
Druh dokumentu: article
ISSN: 1417-3875
DOI: 10.14232/ejqtde.1999.1.9
Popis: We prove the solvability of the parabolic problem $$\partial_t u-\sum_{i,j=1}^N \partial_{x_i}(a_{i,j}(x,t)\partial_{x_j}u)+\sum_{i=1}^N b_i(x,t)\partial_{x_i}u=f(x,t,u)\hbox{ in }\Omega\times R$$ $$u(x,t)=0\hbox{ on }\partial\Omega\times R$$ $$u(x,t)=u(x,t+T)\hbox{ in }\Omega\times R$$ assuming certain conditions on the ratio $2\int_0^s f(x,t,\sigma) d\sigma/s^2$ with respect to the principal eigenvalue of the associated linear problem. The method of proof, whcih is based on the construction of upper and lower solutions, also yields information on the localization and the stability of the solution.
Databáze: Directory of Open Access Journals