Autor: |
Ibrahim A. Alwhbi, Cliff C. Zou, Reem N. Alharbi |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Sensors, Vol 24, Iss 11, p 3509 (2024) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s24113509 |
Popis: |
Encryption is a fundamental security measure to safeguard data during transmission to ensure confidentiality while at the same time posing a great challenge for traditional packet and traffic inspection. In response to the proliferation of diverse network traffic patterns from Internet-of-Things devices, websites, and mobile applications, understanding and classifying encrypted traffic are crucial for network administrators, cybersecurity professionals, and policy enforcement entities. This paper presents a comprehensive survey of recent advancements in machine-learning-driven encrypted traffic analysis and classification. The primary goals of our survey are two-fold: First, we present the overall procedure and provide a detailed explanation of utilizing machine learning in analyzing and classifying encrypted network traffic. Second, we review state-of-the-art techniques and methodologies in traffic analysis. Our aim is to provide insights into current practices and future directions in encrypted traffic analysis and classification, especially machine-learning-based analysis. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|