Network-guided prediction of aromatase inhibitor response in breast cancer.
Autor: | Matthew Ruffalo, Roby Thomas, Jian Chen, Adrian V Lee, Steffi Oesterreich, Ziv Bar-Joseph |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | PLoS Computational Biology, Vol 15, Iss 2, p e1006730 (2019) |
Druh dokumentu: | article |
ISSN: | 1553-734X 1553-7358 |
DOI: | 10.1371/journal.pcbi.1006730 |
Popis: | Prediction of response to specific cancer treatments is complicated by significant heterogeneity between tumors in terms of mutational profiles, gene expression, and clinical measures. Here we focus on the response of Estrogen Receptor (ER)+ post-menopausal breast cancer tumors to aromatase inhibitors (AI). We use a network smoothing algorithm to learn novel features that integrate several types of high throughput data and new cell line experiments. These features greatly improve the ability to predict response to AI when compared to prior methods. For a subset of the patients, for which we obtained more detailed clinical information, we can further predict response to a specific AI drug. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |