The strong maximum principle for Schrödinger operators on fractals
Autor: | Ionescu Marius V., Okoudjou Kasso A., Rogers Luke G. |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Demonstratio Mathematica, Vol 52, Iss 1, Pp 404-409 (2019) |
Druh dokumentu: | article |
ISSN: | 2391-4661 2019-0034 |
DOI: | 10.1515/dema-2019-0034 |
Popis: | We prove a strong maximum principle for Schrödinger operators defined on a class of postcritically finite fractal sets and their blowups without boundary. Our primary interest is in weaker regularity conditions than have previously appeared in the literature; in particular we permit both the fractal Laplacian and the potential to be Radon measures on the fractal. As a consequence of our results, we establish a Harnack inequality for solutions of these operators. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |