Feasibility Study on the Use of a Portable NIR Spectrometer and Multivariate Data Analysis to Discriminate and Quantify Adulteration in Fertilizer

Autor: Ernest Teye, Charles L. Y. Amuah, Kofi Atiah, Ransford Opoku Darko, Kwadwo Kusi Amoah, Emmanuel Afutu, Rebecca Owusu
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Journal of Spectroscopy, Vol 2022 (2022)
Druh dokumentu: article
ISSN: 2314-4939
DOI: 10.1155/2022/1412526
Popis: The rise in population growth worldwide requires efficient management of agricultural lands through the correct determination of authentic fertilizers. In this current study, a rapid on-site detection technique was developed by using portable NIR spectroscopy in the wavelength range of 740–1070 nm together with optimum multivariate algorithms to identify fertilizer integrity (unexpired, expired, and adulterated) as well as quantify the levels (10–50%) of adulteration. NIR models were built based on support vector machine (SVM) and random forest (RF) for identification, while different types of partial least square regression (PLS, iPLS, Si-PLS, and GaPLS) were used for quantification purposes. The models were evaluated according to identification rate (Rt), coefficient of correlation in prediction (Rpre2), and root mean square error of prediction (RMSEP). For the identification of the integrity of the fertilizer, among the mathematical pretreatments used, the first derivative (FD) together with SVM gave above 99.20% identification rate in both calibration and prediction sets. For the quantification of the adulterants, Si-PLS was found to be superior and showed an excellent predictive potential of Rpre2 = 0.95–0.98 and RMSEP = 0.069–0.11 for the two fertilizer types used. The overall results indicated that a handheld NIR spectrometer together with appropriate algorithms could be employed for fast and on-site determination of fertilizer integrity.
Databáze: Directory of Open Access Journals