Performance Assessment of Bias Correction Methods for Precipitation and Temperature from CMIP5 Model Simulation

Autor: Digambar S. Londhe, Yashwant B. Katpatal, Neeraj Dhanraj Bokde
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Applied Sciences, Vol 13, Iss 16, p 9142 (2023)
Druh dokumentu: article
ISSN: 2076-3417
DOI: 10.3390/app13169142
Popis: Hydrological modeling relies on the inputs provided by General Circulation Model (GCM) data, as this allows researchers to investigate the effects of climate change on water resources. But there is high uncertainty in the climate projections with various ensembles and variables. Therefore, it is very important to carry out bias correction in order to analyze the impacts of climate change at a regional level. The performance evaluation of bias correction methods for precipitation, maximum temperature, and minimum temperature in the Upper Bhima sub-basin has been investigated. Four bias correction methods are applied for precipitation viz. linear scaling (LS), local intensity scaling (LOCI), power transformation (PT), and distribution mapping (DM). Three bias correction methods are applied for temperature viz. linear scaling (LS), variance scaling (VS), and distribution mapping (DM). The evaluation of the results from these bias correction methods is performed using the Kolmogorov–Smirnov non-parametric test. The results indicate that bias correction methods are useful in reducing biases in model-simulated data, which improves their reliability. The results of the distribution mapping bias correction method have been proven to be more effective for precipitation, maximum temperature, and minimum temperature data from CMIP5-simulated data.
Databáze: Directory of Open Access Journals