Finite groups with the same conjugacy class sizes as a finite simple group
Autor: | Neda Ahanjideh |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | International Journal of Group Theory, Vol 8, Iss 1, Pp 23-33 (2019) |
Druh dokumentu: | article |
ISSN: | 2251-7650 2251-7669 |
DOI: | 10.22108/ijgt.2017.21236 |
Popis: | For a finite group $H$, let $cs(H)$ denote the set of non-trivial conjugacy class sizes of $H$ and $OC(H)$ be the set of the order components of $H$. In this paper, we show that if $S$ is a finite simple group with the disconnected prime graph and $G$ is a finite group such that $cs(S)=cs(G)$, then $|S|=|G/Z(G)|$ and $OC(S)=OC(G/Z(G))$. In particular, we show that for some finite simple group $S$, $G cong S times Z(G)$. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |