A Partial Order on Bipartite Graphs with n Vertices
Autor: | Emil Daniel Schwab |
---|---|
Jazyk: | German<br />English<br />French |
Rok vydání: | 2009 |
Předmět: | |
Zdroj: | Anale: Seria Informatică, Vol VII, Iss 1, Pp 315-324 (2009) |
Druh dokumentu: | article |
ISSN: | 1583-7165 2065-7471 |
Popis: | The paper examines a partial order on bipartite graphs (X1, X2, E) with n vertices, X1∪X2={1,2,…,n}. The basis of such bipartite graph is X1 = {1,2,…,k}, 0≤k≤n. If U = (X1, X2, E(U)) and V = (Y1,Y2, E(V)) then U≤V iff |X1| ≤ |Y1| and {(i,j)E(U): j>|Y1|} = ={(i,j)E(V):i≤|X1|}. This partial order is a natural partial order of subobjects of an object in a triangular category with bipartite graphs as morphisms. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |