A scalable and fully tuneable VCSEL-based neural network

Autor: Skalli Anas, Goldmann Mirko, Porte Xavier, Haghighi Nasibeh, Reitzenstein Stephan, Lott James A., Brunner Daniel
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: EPJ Web of Conferences, Vol 287, p 13008 (2023)
Druh dokumentu: article
ISSN: 2100-014X
DOI: 10.1051/epjconf/202328713008
Popis: We experimentally demonstrate an autonomous, fully tuneable and scalable neural network of 350+ parallel nodes based on a large area, multimode semiconductor laser. We implement online learning strategies based on reinforcement learning. Our system achieves high performance and a high classification bandwidth of 15KHz for the MNIST dataset. Our approach is highly scalable both in terms of classification bandwidth and neural network size.
Databáze: Directory of Open Access Journals