Autor: |
Minseon Kong, Da Hyeon Oh, Baekseo Choi, Yoon Soo Han |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Energies, Vol 15, Iss 8, p 2765 (2022) |
Druh dokumentu: |
article |
ISSN: |
1996-1073 |
DOI: |
10.3390/en15082765 |
Popis: |
An ionic liquid, 1-methyl-3-propylimidazolium iodide (MPII), was solidified with an organic hole-transporting material, 4,4′,4″-tris[(3-methylphenyl)phenylamino]triphenylamine (m-MTDATA), and the resulting solid-state redox mediator (RM) (m-MTDATA-solidified MPII) was employed in solar devices to realize solid-state dye-sensitized solar cells (sDSSCs). Solar devices with only MPII or m-MTDATA as an RM showed almost 0 mA/cm2 of short-circuit current (Jsc) and thus 0% power conversion efficiency (PCE). However, an sDSSC with the m-MTDATA-solidified MPII exhibited 4.61 mA/cm2 of Jsc and 1.80% PCE. It was found that the increased Jsc and PCE were due to the formation of I3−, which resulted from a reaction between the iodie (I−) of MPII and m-MTDATA cation. Further enhancement in both Jsc (9.43 mA/cm2) and PCE (4.20%) was observed in an sDSSC with 4-tert butylpyridine (TBP) as well as with m-MTDATA-solidified MPII. We attributed the significant increase (about 230%) in PCE to the lowered diffusion resistance of I−/I3− ions in the solid-state RM composed of the m-MTDATA-solidified MPII and TBP, arising from TBP’s role as a plasticizer. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|