Autor: |
Ibanez, Ruben, Gilormini, Pierre, Cueto, Elias, Chinesta, Francisco |
Jazyk: |
English<br />French |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Comptes Rendus. Mécanique, Vol 348, Iss 10-11, Pp 937-958 (2020) |
Druh dokumentu: |
article |
ISSN: |
1873-7234 |
DOI: |
10.5802/crmeca.53 |
Popis: |
The present work aims at analyzing issues related to the data manifold dimensionality. The interest of the study is twofold: (i) first, when too many measurable variables are considered, manifold learning is expected to extract useless variables; (ii) second, and more important, the same technique, manifold learning, could be utilized for identifying the necessity of employing latent extra variables able to recover single-valued outputs. Both aspects are discussed in the modeling of materials and structural systems by using unsupervised manifold learning strategies. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|