Numerical experiments on unsupervised manifold learning applied to mechanical modeling of materials and structures

Autor: Ibanez, Ruben, Gilormini, Pierre, Cueto, Elias, Chinesta, Francisco
Jazyk: English<br />French
Rok vydání: 2020
Předmět:
Zdroj: Comptes Rendus. Mécanique, Vol 348, Iss 10-11, Pp 937-958 (2020)
Druh dokumentu: article
ISSN: 1873-7234
DOI: 10.5802/crmeca.53
Popis: The present work aims at analyzing issues related to the data manifold dimensionality. The interest of the study is twofold: (i) first, when too many measurable variables are considered, manifold learning is expected to extract useless variables; (ii) second, and more important, the same technique, manifold learning, could be utilized for identifying the necessity of employing latent extra variables able to recover single-valued outputs. Both aspects are discussed in the modeling of materials and structural systems by using unsupervised manifold learning strategies.
Databáze: Directory of Open Access Journals