Autor: |
Zhengyi Cao, Jesse Chen, Jayme Cannon, Zachary Meyer, Yongqing Li, Wenlu Ouyang, James Baker, Su He Wang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Microbiology Spectrum, Vol 12, Iss 11 (2024) |
Druh dokumentu: |
article |
ISSN: |
2165-0497 |
DOI: |
10.1128/spectrum.01378-24 |
Popis: |
ABSTRACT Burns are one of the most common injuries in both civilian and combat settings and are difficult to treat. This is particularly true when the wounds are infected with antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). A new generation of safe, broadly effective, and easily applied anti-infection agents is needed to successfully prevent and treat infections. Nanoemulsions (NEs) are nanometer-sized particles with a positively charged surfactant at their oil-water interface. In the current study, we further investigated antimicrobial NEs as a treatment to address burn wounds infected by MRSA. Specifically, using a porcine skin model, we infected partial thickness thermal burn wounds with MRSA and then treated it with the nanoemulsion formulation (NB-201) or placebo controls. Bacterial viability after treatment was determined, and inflammation indexes in wounds were scored by histopathology. Topical treatment of infected wounds with NB-201 resulted in reduced colony-forming units (CFUs) compared to placebo treatment. In addition, NB-201 was effective in significantly alleviating inflammation in the treated wounds and promoting wound healing. These results indicate that NB-201 is a promising new agent to treat skin burn wounds infected with MRSA.IMPORTANCEThe findings of this study are focused on therapeutic applications of nanotechnology. In the current study, we demonstrated that a nanoemulsion formulation could effectively kill methicillin-resistant Staphylococcus aureus (MRSA) infection in porcine skin burn wounds. Infection of MRSA in burn wound is a common threat to public health and is usually difficult to treat due to limited therapies available. NB-201 was effective in significantly alleviating inflammation in the treated wounds and promoting wound healing. Therefore, the finding of this study has a great potential to make this formulation a novel antimicrobial agent against MRSA. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|