Popis: |
Abstract The interaction between genotype and environment (GEI) significantly influences plant performance, crucial for breeding programs and ultimately boosting crop productivity. Alongside GEI, breeders encounter another hurdle in their quest for yield improvement, notably adverse and negative correlations among pivotal traits. This study delved into the stability of white sugar yield (WSY), root yield (RY), sugar content (SC), extraction coefficient of sugar (ECS), and the interplay among essential traits including RY, SC, alpha amino nitrogen (N), sodium (Na+), and potassium (K+) across 15 sugar beet hybrids and three control varieties. The investigation spanned two locations over two consecutive years (2022–2023), employing a randomized complete block design with four replications to comprehensively analyze these factors. The analysis of variance highlighted the significant effects of environment, genotype, and GEI at the 1% probability level. Notably, the AMMI analysis of GEI revealed the significance of the first component for WSY, RY, and SC, with the first two components proving significant for ECS. Within the linear mixed model (LMM), WSY, RY, SC, and ECS demonstrated significant effects from both genotype and GEI. In the WAASB biplot, genotypes 10, 8, 17, 6, 13, 14, 15, 7, 12, and 16 exhibited stability in WSY, while genotypes 9, 10, 6, 14, 7, 8, 13, 12, 18, and 15 displayed stability in RY. Additionally, genotypes 10, 15, 12, 13, 16, 17, 6, and 14 were stable for SC, and genotypes 8, 10, 7, 6, 13, 12, 16, 17, 15, 14, and 18 showcased stability in ECS, boasting above-average yield values. In the genotype by yield × trait (GYT) biplot, genotypes 15, 18, and 16 emerged as top performers when combining RY with SC, Na+, N, and K+, suggesting their potential for inclusion in breeding programs. |