Autor: |
Daoqun Liu, Peng Zhang, Bo Tang, Wenwu Wang, Zhihua Li |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Micromachines, Vol 13, Iss 5, p 649 (2022) |
Druh dokumentu: |
article |
ISSN: |
2072-666X |
DOI: |
10.3390/mi13050649 |
Popis: |
High-performance waveguide-integrated Ge/Si APDs in separate absorption, charge, and multiplication (SACM) schemes have been exploited to facilitate energy-efficient optical communication and interconnects. However, the charge layer design is complex and time-consuming. A waveguide-integrated Ge/Si avalanche photodetector (APD) is proposed in a separate absorption and multiplication (SAM) configuration. The device can work at low voltage and high speed with a lateral multiplication region without complexity of the charge layer. The proposed device is implemented by the complementary metal-oxide-semiconductor (CMOS) process in the 8-inch Si photonics platform. The device has a low breakdown voltage of 12 V and shows high responsivity of 15.1 A/W at 1550 nm wavelength under optical power of −22.49 dBm, corresponding to a multiplication gain of 18.1. Moreover, an opto-electrical bandwidth of 20.7 GHz is measured at 10.6 V. The high-speed performance at low voltage shows a great potential to implement high-energy-efficient Si optical communications and interconnections. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|