Autor: |
Min Sun, Yiju Wang, Jing Liu |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Advances in Difference Equations, Vol 2019, Iss 1, Pp 1-10 (2019) |
Druh dokumentu: |
article |
ISSN: |
1687-1847 |
DOI: |
10.1186/s13662-019-2253-7 |
Popis: |
Abstract In this paper two modified least-squares iterative algorithms are presented for solving the Lyapunov matrix equations. The first algorithm is based on the hierarchical identification principle, which can be viewed as a surrogate of the least-squares iterative algorithm proposed by Ding et al., whose convergence has not been proved until now. The second one is motivated by a new form of fixed point iterative scheme. With the tool of a new matrix norm, the proof of both algorithms’ global convergence is offered. Furthermore, the feasible sets of their convergence factors are analyzed. Finally, a numerical example is presented to illustrate the rationality of theoretical results. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|