Fair Max–Min Diversity Maximization in Streaming and Sliding-Window Models

Autor: Yanhao Wang, Francesco Fabbri, Michael Mathioudakis, Jia Li
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Entropy, Vol 25, Iss 7, p 1066 (2023)
Druh dokumentu: article
ISSN: 1099-4300
DOI: 10.3390/e25071066
Popis: Diversity maximization is a fundamental problem with broad applications in data summarization, web search, and recommender systems. Given a set X of n elements, the problem asks for a subset S of k≪n elements with maximum diversity, as quantified by the dissimilarities among the elements in S. In this paper, we study diversity maximization with fairness constraints in streaming and sliding-window models. Specifically, we focus on the max–min diversity maximization problem, which selects a subset S that maximizes the minimum distance (dissimilarity) between any pair of distinct elements within it. Assuming that the set X is partitioned into m disjoint groups by a specific sensitive attribute, e.g., sex or race, ensuring fairness requires that the selected subset S contains ki elements from each group i∈[m]. Although diversity maximization has been extensively studied, existing algorithms for fair max–min diversity maximization are inefficient for data streams. To address the problem, we first design efficient approximation algorithms for this problem in the (insert-only) streaming model, where data arrive one element at a time, and a solution should be computed based on the elements observed in one pass. Furthermore, we propose approximation algorithms for this problem in the sliding-window model, where only the latest w elements in the stream are considered for computation to capture the recency of the data. Experimental results on real-world and synthetic datasets show that our algorithms provide solutions of comparable quality to the state-of-the-art offline algorithms while running several orders of magnitude faster in the streaming and sliding-window settings.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje