Generalized distributions of order k associated with success runs in Bernoulli trials
Autor: | Gregory A. Tripsiannis, Afroditi A. Papathanasiou, Andreas N. Philippou |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2003 |
Předmět: | |
Zdroj: | International Journal of Mathematics and Mathematical Sciences, Vol 2003, Iss 13, Pp 801-815 (2003) |
Druh dokumentu: | article |
ISSN: | 0161-1712 1687-0425 01611712 |
DOI: | 10.1155/S0161171203207250 |
Popis: | In a sequence of independent Bernoulli trials, by counting multidimensional lattice paths in order to compute the probability of a first-passage event, we derive and study a generalized negative binomial distribution of order k, type I, which extends to distributions of order k, the generalized negative binomial distribution of Jain and Consul (1971), and includes as a special case the negative binomial distribution of order k, type I, of Philippou et al. (1983). This new distribution gives rise in the limit to generalized logarithmic and Borel-Tanner distributions and, by compounding, to the generalized Pólya distribution of the same order and type. Limiting cases are considered and an application to observed data is presented. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |