Autor: |
Jaegak Lee, Hyemi Jeong, Taehyun Kim, Hyunseok Yang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Biomimetics, Vol 9, Iss 6, p 311 (2024) |
Druh dokumentu: |
article |
ISSN: |
2313-7673 |
DOI: |
10.3390/biomimetics9060311 |
Popis: |
This study investigated the locomotion mechanism of foxtail robots, focusing on the frictional anisotropy of tilted bristles under the same friction coefficient and propulsion strategy using bristle diversity. Through dynamic analysis and simulations, we confirmed the frictional anisotropy of tilted bristles and elucidated the role of bristle diversity in generating propulsive force. The interaction between contact nonuniformity and frictional anisotropy was identified as the core principle enabling foxtail locomotion. Simulations of foxtail robots with multiple bristles demonstrated that variations in bristle length, angle, and deformation contribute to propulsive force generation and environmental adaptability. In addition, this study analyzed the influence of major design parameters on frictional anisotropy, highlighting the critical roles of body height, bristle length, stiffness, reference angle, and friction coefficient. The proposed guidelines for designing foxtail robots emphasize securing bristle nonuniformity and inducing contact nonuniformity. The simulation framework presented enables the quantitative prediction and optimization of foxtail robot performance. This research provides valuable insights into foxtail robot locomotion and lays a foundation for the development of efficient and adaptive next-generation robots for diverse environments. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|