Autor: |
Mahmoud Aref, Almoataz Y. Abdelaziz, Zong Woo Geem, Junhee Hong, Farag K. Abo-Elyousr |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Energies, Vol 16, Iss 5, p 2391 (2023) |
Druh dokumentu: |
article |
ISSN: |
1996-1073 |
DOI: |
10.3390/en16052391 |
Popis: |
The appropriate design of the power oscillation damping controllers guarantees that distributed energy resources and sustainable smart grids deliver excellent service subjected to big data for planned maintenance of renewable energy. Therefore, the main target of this study is to suppress the low-frequency oscillations due to disruptive faults and heavy load disturbance conditions. The considered power system comprises two interconnected hydroelectric areas with heavy solar energy penetrations, severely impacting the power system stabilizers. When associated with appropriate controllers, FACTs technology such as the static synchronous series compensator provides efficient dampening of the adverse power frequency oscillations. First, a two-area power system with heavy solar energy penetration is implemented. Second, two neuro-based controllers are developed. The first controller is constructed with an optimized particle swarm optimization (PSO) based neural network, while the second is created with the adaptive neuro-fuzzy. An energy management approach is developed to lessen the risky impact of the injected solar energy upon the rotor speed deviations of the synchronous generator. The obtained results are impartially compared with a lead-lag compensator. The obtained results demonstrate that the developed PSO-based neural network controller outperforms the other controllers in terms of execution time and the system performance indices. Solar energy penetrations temporarily influence the electrical power produced by the synchronous generators, which slow down for uncomfortably lengthy intervals for solar energy injection greater than 0.5 pu. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|