Bipartite divisor graph for the set of irreducible character degrees
Autor: | Roghayeh Hafezieh |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | International Journal of Group Theory, Vol 6, Iss 4, Pp 41-51 (2017) |
Druh dokumentu: | article |
ISSN: | 2251-7650 2251-7669 |
DOI: | 10.22108/ijgt.2017.21221 |
Popis: | Let $G$ be a finite group. We consider the set of the irreducible complex characters of $G$, namely $Irr(G)$, and the related degree set $cd(G)={chi(1) : chiin Irr(G)}$. Let $rho(G)$ be the set of all primes which divide some character degree of $G$. In this paper we introduce the bipartite divisor graph for $cd(G)$ as an undirected bipartite graph with vertex set $rho(G)cup (cd(G)setminus{1})$, such that an element $p$ of $rho(G)$ is adjacent to an element $m$ of $cd(G)setminus{1}$ if and only if $p$ divides $m$. We denote this graph simply by $B(G)$. Then by means of combinatorial properties of this graph, we discuss the structure of the group $G$. In particular, we consider the cases where $B(G)$ is a path or a cycle. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |