İyileştirilmiş Öğretme-Öğrenme Tabanlı Optimizasyon Algoritmasıyla Güç Sistemlerinde Gerilim Kararlılığı Çalışması

Autor: Salih ERMİŞ, Ramazan BAYINDIR, Mehmet YEŞİLBUDAK
Jazyk: English<br />Turkish
Rok vydání: 2023
Předmět:
Zdroj: Gazi Üniversitesi Fen Bilimleri Dergisi, Vol 11, Iss 3, Pp 695-705 (2023)
Druh dokumentu: article
ISSN: 2147-9526
DOI: 10.29109/gujsc.1282188
Popis: Bu çalışmada, son yıllarda geliştirilen öğrenme-öğretme tabanlı optimizasyon algoritması (ÖÖTO) yeniden düzenlenerek, güç sistemlerinde gerilim kararlılığı için yeni bir optimizasyon yöntemi geliştirilmiştir. Düzenlenen öğrenme-öğretme tabanlı optimizasyon (D-ÖÖTO) algoritması, IEEE 14 baralı ve Türkiye, İstanbul Anadolu yakasında 17 baralı gerçek bir güç sistemi kullanılarak gerilim kararlılığı optimizasyonu olarak sunulmuştur. Bu güç sistemlerinde, beş farklı durum (temel durum, temel durumda ki talep edilen yükün %20, %40 ve %60 artışı ve 1-5 nolu hat kesintisi) oluşturulmuş ve analizler gerçekleştirilmiştir. Daha sonra yük baralarına şönt reaktif güç kompansatörleri (RGK) bağlanarak gerilim kararlılığı açısından etkisi incelenmiştir. Sunulan D-ÖÖTO algoritmasının etkinliğini kanıtlamak için orijinal ÖÖTO ve literatürde kullanılan Yerçekimi arama algoritması (YAA), parçacık sürü optimizasyonu (PSO) ve Newton-Raphson güç akış yönetimi sonuçlarıyla karşılaştırılmıştır. Tüm çalışma koşullarında sunulan D-ÖÖTO algoritması diğer yöntemlere göre üstünlüğü kanıtlanmıştır. Tüm analizler, Intel Core(TM) i7-2620 2.7GHz ve 8.00 (64 bit) Gb Ram PC kullanılarak, Matlab R2017b programında çözümlenmiştir.
Databáze: Directory of Open Access Journals