Scalability Analysis of LoRa and Sigfox in Congested Environment and Calculation of Optimum Number of Nodes
Autor: | Mandeep Malik, Ashwin Kothari, Rashmi Pandhare |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Sensors, Vol 24, Iss 20, p 6673 (2024) |
Druh dokumentu: | article |
ISSN: | 1424-8220 |
DOI: | 10.3390/s24206673 |
Popis: | Low-power wide area network (LPWAN) technologies as part of IoT are gaining a lot of attention as they provide affordable communication over large areas. LoRa and Sigfox as part of LPWAN have emerged as highly effective and promising non-3GPP unlicensed band IoT technologies while challenging the supremacy of cellular technologies for machine-to-machine-(M2M)-based use cases. This paper presents the design goals of LoRa and Sigfox while throwing light on their suitability in congested environments. A practical traffic generator of both LoRa and Sigfox is introduced and further interpolated for understanding simultaneous operation of 100 to 10,000 such nodes in close vicinity while establishing deep understanding on effects of collision, re-transmissions, and link behaviour. Previous work in this field have overlooked simultaneous deployment, collision issues, effects of re-transmission, and propagation profile while arriving at a number of successful receptions. This work uses packet error rate (PER) and delivery ratio, which are correct metrics to calculate successful transmissions. The obtained results show that a maximum of 100 LoRa and 200 Sigfox nodes can be deployed in a fixed transmission use case over an area of up to 1 km. As part of the future scope, solutions have been suggested to increase the effectiveness of LoRa and Sigfox networks. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |
načítá se...