Lightweight high-precision SAR ship detection method based on YOLOv7-LDS.

Autor: Shiliang Zhu, Min Miao
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: PLoS ONE, Vol 19, Iss 2, p e0296992 (2024)
Druh dokumentu: article
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0296992&type=printable
Popis: The current challenges in Synthetic Aperture Radar (SAR) ship detection tasks revolve around handling significant variations in target sizes and managing high computational expenses, which hinder practical deployment on satellite or mobile airborne platforms. In response to these challenges, this research presents YOLOv7-LDS, a lightweight yet highly accurate SAR ship detection model built upon the YOLOv7 framework. In the core of YOLOv7-LDS's architecture, we introduce a streamlined feature extraction network that strikes a delicate balance between detection precision and computational efficiency. This network is founded on Shufflenetv2 and incorporates Squeeze-and-Excitation (SE) attention mechanisms as its key elements. Additionally, in the Neck section, we introduce the Weighted Efficient Aggregation Network (DCW-ELAN), a fundamental feature extraction module that leverages Coordinate Attention (CA) and Depthwise Convolution (DWConv). This module efficiently aggregates features while preserving the ability to identify small-scale variations, ensuring top-quality feature extraction. Furthermore, we introduce a lightweight Spatial Pyramid Dilated Convolution Cross-Stage Partial Channel (LSPHDCCSPC) module. LSPHDCCSPC is a condensed version of the Spatial Pyramid Pooling Cross-Stage Partial Channel (SPPCSPC) module, incorporating Dilated Convolution (DConv) as a central component for extracting multi-scale information. The experimental results show that YOLOv7-LDS achieves a remarkable Mean Average Precision (mAP) of 99.1% and 95.8% on the SAR Ship Detection Dataset (SSDD) and the NWPU VHR-10 dataset with a parameter count (Params) of 3.4 million, a Giga Floating Point Operations Per Second (GFLOPs) of 6.1 and an Inference Time (IT) of 4.8 milliseconds. YOLOv7-LDS effectively strikes a fine balance between computational cost and detection performance, surpassing many of the current state-of-the-art object detection models. As a result, it offers a more resilient solution for maritime ship monitoring.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje