Autor: |
Meshari Alsharari, Bo Bo Han, Shobhit K. Patel, Jaymit Surve, Khaled Aliqab, Ammar Armghan |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Symmetry, Vol 15, Iss 2, p 352 (2023) |
Druh dokumentu: |
article |
ISSN: |
2073-8994 |
DOI: |
10.3390/sym15020352 |
Popis: |
An efficient diagonally symmetric infinity-shaped broadband solar absorber has been demonstrated in this research paper. The structure was developed with an infinity-shaped resonator made of titanium (Ti) and gallium arsenide (GaAs) at the base substrate layer to achieve absorption in a wideband spectrum under solar energy radiation, and absorption efficiencies were calculated employing the finite element method. The average solar energy absorption spectrum ranges from the ultraviolet to the mid-infrared regions, and 93.93% average absorption in this band is achieved. Moreover, bandwidths of 2800 and 1110 nm were observed, and, in these bands, we attained continuous absorption above 90% and 95%, respectively, with average absorption rates of 93.93% and 96.25%, respectively. Furthermore, based on this solar energy absorber, which was optimized after varying many design parameters, it is also observed that the developed design is angle-insensitive from 0° to 50° and polarization-insensitive from the results of the transverse electric (TE) and transverse magnetic (TM) modes. The developed infinity-shaped broadband solar absorber design is highly efficient and provides broadband absorptance that can be used as an absorber layer in solar cells. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|