Autor: |
Antonio Rafael Selva Castañeda, Erick Ramírez Torres, Narciso Antonio Villar Goris, Maraelys Morales González, Juan Bory Reyes, Victoriano Gustavo Sierra González, María Schonbek, Juan Ignacio Montijano, Luis Enrique Bergues Cabrales |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
PLoS ONE, Vol 14, Iss 11, p e0224978 (2019) |
Druh dokumentu: |
article |
ISSN: |
1932-6203 |
DOI: |
10.1371/journal.pone.0224978 |
Popis: |
BACKGROUND:Different equations have been used to describe and understand the growth kinetics of undisturbed malignant solid tumors. The aim of this paper is to propose a new formulation of the Gompertz equation in terms of different parameters of a malignant tumor: the intrinsic growth rate, the deceleration factor, the apoptosis rate, the number of cells corresponding to the tumor latency time, and the fractal dimensions of the tumor and its contour. METHODS:Furthermore, different formulations of the Gompertz equation are used to fit experimental data of the Ehrlich and fibrosarcoma Sa-37 tumors that grow in male BALB/c/Cenp mice. The parameters of each equation are obtained from these fittings. RESULTS:The new formulation of the Gompertz equation reveals that the initial number of cancerous cells in the conventional Gompertz equation is not a constant but a variable that depends nonlinearly on time and the tumor deceleration factor. In turn, this deceleration factor depends on the apoptosis rate of tumor cells and the fractal dimensions of the tumor and its irregular contour. CONCLUSIONS:It is concluded that this new formulation has two parameters that are directly estimated from the experiment, describes well the growth kinetics of unperturbed Ehrlich and fibrosarcoma Sa-37 tumors, and confirms the fractal origin of the Gompertz formulation and the fractal property of tumors. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|