Generalized Navier–Stokes Equations with Non-Homogeneous Boundary Conditions

Autor: Evgenii S. Baranovskii, Mikhail A. Artemov
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Fractal and Fractional, Vol 6, Iss 7, p 373 (2022)
Druh dokumentu: article
ISSN: 2504-3110
DOI: 10.3390/fractalfract6070373
Popis: We study the generalized unsteady Navier–Stokes equations with a memory integral term under non-homogeneous Dirichlet boundary conditions. Using a suitable fractional Sobolev space for the boundary data, we introduce the concept of strong solutions. The global-in-time existence and uniqueness of a small-data strong solution is proved. For the proof of this result, we propose a new approach. Our approach is based on the operator treatment of the problem with the consequent application of a theorem on the local unique solvability of an operator equation involving an isomorphism between Banach spaces with continuously Fréchet differentiable perturbations.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje