Autor: |
Evgenii S. Baranovskii, Mikhail A. Artemov |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Fractal and Fractional, Vol 6, Iss 7, p 373 (2022) |
Druh dokumentu: |
article |
ISSN: |
2504-3110 |
DOI: |
10.3390/fractalfract6070373 |
Popis: |
We study the generalized unsteady Navier–Stokes equations with a memory integral term under non-homogeneous Dirichlet boundary conditions. Using a suitable fractional Sobolev space for the boundary data, we introduce the concept of strong solutions. The global-in-time existence and uniqueness of a small-data strong solution is proved. For the proof of this result, we propose a new approach. Our approach is based on the operator treatment of the problem with the consequent application of a theorem on the local unique solvability of an operator equation involving an isomorphism between Banach spaces with continuously Fréchet differentiable perturbations. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|