A note on 'Problem of eigenvalues of stochastic Hamiltonian systems with boundary conditions'

Autor: Jing, Guangdong, Wang, Penghui
Jazyk: English<br />French
Rok vydání: 2021
Předmět:
Zdroj: Comptes Rendus. Mathématique, Vol 359, Iss 1, Pp 99-104 (2021)
Druh dokumentu: article
ISSN: 1778-3569
DOI: 10.5802/crmath.103
Popis: The eigenvalue problem of stochastic Hamiltonian systems with boundary conditions was studied by Peng [4] in 2000. For the one-dimensional case, denoting by $\lbrace \lambda _n\rbrace _{n=1}^{\infty }$ all the eigenvalues of such an eigenvalue problem, Peng proved that $\lambda _n\rightarrow +\infty $ as $n\rightarrow \infty $. In this short note, we prove that the growth order of $\lambda _n$ is the same as $n^2$. Apart from the interest of this result in itself, the statistic periodicity of solutions of FBSDEs can be estimated directly by corresponding coefficients and time duration.
Databáze: Directory of Open Access Journals