Autor: |
Huiting Zhang, Yuying Yuan, Sisi Li, Yongxin Yuan |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
AIMS Mathematics, Vol 7, Iss 3, Pp 3680-3691 (2022) |
Druh dokumentu: |
article |
ISSN: |
2473-6988 |
DOI: |
10.3934/math.2022203?viewType=HTML |
Popis: |
In this paper, the least-squares solutions to the linear matrix equation $ A^{\ast}XB+B^{\ast}X^{\ast}A = D $ are discussed. By using the canonical correlation decomposition (CCD) of a pair of matrices, the general representation of the least-squares solutions to the matrix equation is derived. Moreover, the expression of the solution to the corresponding weighted optimal approximation problem is obtained. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|