Species-Specific Unbound Fraction Differences in Highly Bound PFAS: A Comparative Study across Human, Rat, and Mouse Plasma and Albumin

Autor: Sangwoo Ryu, Woodrow Burchett, Sam Zhang, Seyed Mohamad Sadegh Modaresi, Juliana Agudelo Areiza, Emily Kaye, Fabian Christoph Fischer, Angela L. Slitt
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Toxics, Vol 12, Iss 4, p 253 (2024)
Druh dokumentu: article
ISSN: 2305-6304
DOI: 10.3390/toxics12040253
Popis: Per- and polyfluoroalkyl substances (PFAS) are a diverse group of fluorinated compounds which have yet to undergo comprehensive investigation regarding potential adverse health effects and bioaccumulative properties. With long half-lives and accumulative properties, PFAS have been linked to several toxic effects in both non-clinical species such as rat and mouse as well as human. Although biological impacts and specific protein binding of PFAS have been examined, there is no study focusing on the species-specific fraction unbound (fu) in plasma and related toxicokinetics. Herein, a presaturation equilibrium dialysis method was used to measure and validate the binding of 14 individual PFAS with carbon chains containing 4 to 12 perfluorinated carbon atoms and several functional head-groups to albumin and plasma of mouse (C57BL/6 and CD-1), rat, and human. Equivalence testing between each species-matrix combination showed positive correlation between rat and human when comparing fu in plasma and binding to albumin. Similar trends in binding were also observed for mouse plasma and albumin. Relatively high Spearman correlations for all combinations indicate high concordance of PFAS binding regardless of matrix. Physiochemical properties of PFAS such as molecular weight, chain length, and lipophilicity were found to have important roles in plasma protein binding of PFAS.
Databáze: Directory of Open Access Journals