Near―perfect non-crossing harmonic matchings in randomly labeled points on a circle

Autor: József Balogh, Boris Pittel, Gelasio Salazar
Jazyk: angličtina
Rok vydání: 2005
Předmět:
Zdroj: Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings vol. AD,..., Iss Proceedings (2005)
Druh dokumentu: article
ISSN: 1365-8050
DOI: 10.46298/dmtcs.3366
Popis: Consider a set $S$ of points in the plane in convex position, where each point has an integer label from $\{0,1,\ldots,n-1\}$. This naturally induces a labeling of the edges: each edge $(i,j)$ is assigned label $i+j$, modulo $n$. We propose the algorithms for finding large non―crossing $\textit{harmonic}$ matchings or paths, i. e. the matchings or paths in which no two edges have the same label. When the point labels are chosen uniformly at random, and independently of each other, our matching algorithm with high probability (w.h.p.) delivers a nearly―perfect matching, a matching of size $n/2 - O(n^{1/3}\ln n)$.
Databáze: Directory of Open Access Journals