Autor: |
Giovanni Geraci, Adrian Garcia-Rodriguez, Lorenzo Galati Giordano, David Lopez-Perez, Emil Bjornson |
Jazyk: |
angličtina |
Rok vydání: |
2018 |
Předmět: |
|
Zdroj: |
IEEE Access, Vol 6, Pp 67853-67865 (2018) |
Druh dokumentu: |
article |
ISSN: |
2169-3536 |
DOI: |
10.1109/ACCESS.2018.2876700 |
Popis: |
The purpose of this paper is to bestow the reader with a timely study of UAV cellular communications, bridging the gap between the 3GPP standardization status quo and the more forward-looking research. Special emphasis is placed on the downlink command and control (C&C) channel to aerial users, whose reliability is deemed of paramount technological importance for the commercial success of UAV cellular communications. Through a realistic side-by-side comparison of two network deployments – a present-day cellular infrastructure versus a next-generation massive MIMO system – a plurality of key facts are cast light upon, with the three main ones summarized as follows: 1) UAV cell selection is essentially driven by the secondary lobes of a base station’s radiation pattern, causing UAVs to associate to far-flung cells; 2) over a 10 MHz bandwidth, and for UAV heights of up to 300 m, massive MIMO networks can support 100 kbps C&C channels in 74% of the cases when the uplink pilots for channel estimation are reused among base station sites, and in 96% of the cases without pilot reuse across the network; and 3) supporting UAV C&C channels can considerably affect the performance of ground users on account of severe pilot contamination, unless suitable power control policies are in place. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|