Autor: |
Kristina S. Zinchenko, Fernando Ardana-Lamas, Valentina Utrio Lanfaloni, Nicholas Monahan, Issaka Seidu, Michael S. Schuurman, Simon P. Neville, Hans Jakob Wörner |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Structural Dynamics, Vol 10, Iss 6, Pp 064303-064303-13 (2023) |
Druh dokumentu: |
article |
ISSN: |
2329-7778 |
DOI: |
10.1063/4.0000217 |
Popis: |
The Jahn–Teller effect (JTE) is central to the understanding of the physical and chemical properties of a broad variety of molecules and materials. Whereas the manifestations of the JTE in stationary properties of matter are relatively well studied, the study of JTE-induced dynamics is still in its infancy, largely owing to its ultrafast and non-adiabatic nature. For example, the time scales reported for the distortion of CH 4 + from the initial T d geometry to a nominal C 2 v relaxed structure range from 1.85 fs over 10 ± 2 fs to 20 ± 7 fs. Here, by combining element-specific attosecond transient-absorption spectroscopy and quantum-dynamics simulations, we show that the initial electronic relaxation occurs within 5 fs and that the subsequent nuclear dynamics are dominated by the Q2 scissoring and Q1 symmetric stretching modes, which dephase in 41 ± 10 fs and 13 ± 3 fs, respectively. Significant structural relaxation is found to take place only along the e-symmetry Q2 mode. These results demonstrate that CH 4 + created by ionization of CH 4 is best thought of as a highly fluxional species that possesses a long-time-averaged vibrational distribution centered around a D 2 d structure. The methods demonstrated in our work provide guidelines for the understanding of Jahn–Teller driven non-adiabatic dynamics in other more complex systems. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|