De novo identification of expressed cancer somatic mutations from single-cell RNA sequencing data

Autor: Tianyun Zhang, Hanying Jia, Tairan Song, Lin Lv, Doga C. Gulhan, Haishuai Wang, Wei Guo, Ruibin Xi, Hongshan Guo, Ning Shen
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Genome Medicine, Vol 15, Iss 1, Pp 1-18 (2023)
Druh dokumentu: article
ISSN: 1756-994X
DOI: 10.1186/s13073-023-01269-1
Popis: Abstract Identifying expressed somatic mutations from single-cell RNA sequencing data de novo is challenging but highly valuable. We propose RESA – Recurrently Expressed SNV Analysis, a computational framework to identify expressed somatic mutations from scRNA-seq data. RESA achieves an average precision of 0.77 on three in silico spike-in datasets. In extensive benchmarking against existing methods using 19 datasets, RESA consistently outperforms them. Furthermore, we applied RESA to analyze intratumor mutational heterogeneity in a melanoma drug resistance dataset. By enabling high precision detection of expressed somatic mutations, RESA substantially enhances the reliability of mutational analysis in scRNA-seq. RESA is available at https://github.com/ShenLab-Genomics/RESA .
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje