Popis: |
The underwater glider (UG) is a new type of underwater vehicle driven by buoyancy, which has the advantages of low energy consumption, high efficiency, long-endurance, low cost, reusability and so on. The UG can also meet the needs of long-term and large-scale ocean observation and exploration. As an observation platform, the UG needs to carry out path planning and correction continuously in the early stages and during missions in order to better serve the requirements of ocean observation and exploration. First, this paper summarizes the relevant literatures on path planning research methods for UG in recent years. UG path planning algorithms are mainly divided into three categories: traditional algorithms, intelligent optimization algorithms and multi-algorithm fusions. Combined with practical application, the performance of different path planning algorithms is compared. The key technologies of UG path planning, such as environment reconstruction, environment perception, intelligent decision-making and underwater positioning, are then summarized. Finally, the development direction of UG multi-algorithm integration, multi-glider cooperation, multi-dimensional integration of spatiotemporal constraints and high-precision in complex and unsteady environments are prospected. |