Improved nonlinear generalized model predictive control for robustness and power enhancement of a DFIG-based wind energy converter

Autor: Kamel Ouari, Youcef Belkhier, Hafidh Djouadi, Amel Kasri, Mohit Bajaj, Mohammad Alsharef, Ehab E. Elattar, Salah Kamel
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Frontiers in Energy Research, Vol 10 (2022)
Druh dokumentu: article
ISSN: 2296-598X
DOI: 10.3389/fenrg.2022.996206
Popis: Many studies have been made on the double-fed induction generator wind turbine system (DFIG-WTS) in recent decades due to its power management capability, speed control operation, low converter cost, and minimized energy losses. In contrast, induction machine control is a more complex task because of its multivariable and nonlinear nature. In this work, a new robust nonlinear generalized predictive control (RNGPC) is developed to maximize the extracted energy from the wind without the use of aerodynamic torque measurements or an observer. The aim of the predictive control is to produce an anticipated impact by employing explicit knowledge of the present condition. By revisiting the cost function of the conventional nonlinear generalized predictive control (NGPC), which is based on Taylor series expansion, in that way, the resilience of the system is improved. An integral action is included in the nonlinear predictive controller. As a result, if the closed loop system is stable, the suggested controller totally eliminates the steady state error, even if unknown perturbations and mismatched parameters are present. The output locating error’s convergence to the source is utilized to show the locked system’s stability. Simulation results demonstrate and verify the efficiency, the good performance, and robustness of this proposed control technique.
Databáze: Directory of Open Access Journals