High-Efficiency Electron Transport Layer-Free Perovskite/GeTe Tandem Solar Cell: Numerical Simulation

Autor: Mostafa M. Salah, Abdelhalim Zekry, Mohamed Abouelatta, Ahmed Shaker, Mohamed Mousa, Fathy Z. Amer, Roaa I. Mubarak, Ahmed Saeed
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Crystals, Vol 12, Iss 7, p 878 (2022)
Druh dokumentu: article
ISSN: 2073-4352
DOI: 10.3390/cryst12070878
Popis: The primary purpose of recent research has been to achieve a higher power conversion efficiency (PCE) with stable characteristics, either through experimental studies or through modeling and simulation. In this study, a theoretical analysis of an efficient perovskite solar cell (PSC) with cuprous oxide (Cu2O) as the hole transport material (HTM) and zinc oxysulfide (ZnOS) as the electron transport material (ETM) was proposed to replace the traditional HTMs or ETMs. In addition, the impact of doping the perovskite layer was investigated. The results show that the heterostructure of n-p PSC without an electron transport layer (ETL) could replace the traditional n-i-p structure with better performance metrics and more stability due to reducing the number of layers and interfaces. The impact of HTM doping and thickness was investigated. In addition, the influence of the energy gap of the absorber layer was studied. Furthermore, the proposed PSC without ETL was used as a top sub-cell with germanium-telluride (GeTe) as a bottom sub-cell to produce an efficient tandem cell and boost the PCE. An ETL-free PSC/GeTe tandem cell is proposed for the first time to provide an efficient and stable tandem solar cell with a PCE of 45.99%. Finally, a comparison between the performance metrics of the proposed tandem solar cell and those of other recent studies is provided. All the simulations performed in this study are accomplished by using SCAPS-1D.
Databáze: Directory of Open Access Journals