Autor: |
F. Bisti, V. A. Rogalev, M. Karolak, S. Paul, A. Gupta, T. Schmitt, G. Güntherodt, V. Eyert, G. Sangiovanni, G. Profeta, V. N. Strocov |
Jazyk: |
angličtina |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
Physical Review X, Vol 7, Iss 4, p 041067 (2017) |
Druh dokumentu: |
article |
ISSN: |
2160-3308 |
DOI: |
10.1103/PhysRevX.7.041067 |
Popis: |
Chromium dioxide CrO_{2} belongs to a class of materials called ferromagnetic half-metals, whose peculiar aspect is that they act as a metal in one spin orientation and as a semiconductor or insulator in the opposite one. Despite numerous experimental and theoretical studies motivated by technologically important applications of this material in spintronics, its fundamental properties such as momentum-resolved electron dispersions and the Fermi surface have so far remained experimentally inaccessible because of metastability of its surface, which instantly reduces to amorphous Cr_{2}O_{3}. In this work, we demonstrate that direct access to the native electronic structure of CrO_{2} can be achieved with soft-x-ray angle-resolved photoemission spectroscopy whose large probing depth penetrates through the Cr_{2}O_{3} layer. For the first time, the electronic dispersions and Fermi surface of CrO_{2} are measured, which are fundamental prerequisites to solve the long debate on the nature of electronic correlations in this material. Since density functional theory augmented by a relatively weak local Coulomb repulsion gives an exhaustive description of our spectroscopic data, we rule out strong-coupling theories of CrO_{2}. Crucial for the correct interpretation of our experimental data in terms of the valence-band dispersions is the understanding of a nontrivial spectral response of CrO_{2} caused by interference effects in the photoemission process originating from the nonsymmorphic space group of the rutile crystal structure of CrO_{2}. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|