Autor: |
Omar Abbara, Mauricio Zevallos |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Econometrics, Vol 11, Iss 1, p 1 (2022) |
Druh dokumentu: |
article |
ISSN: |
2225-1146 |
DOI: |
10.3390/econometrics11010001 |
Popis: |
In this paper, we propose a new method for estimating and forecasting asymmetric stochastic volatility models. The proposal is based on dynamic linear models with Markov switching written as state space models. Then, the likelihood is calculated through Kalman filter outputs and the estimates are obtained by the maximum likelihood method. Monte Carlo experiments are performed to assess the quality of estimation. In addition, a backtesting exercise with the real-life time series illustrates that the proposed method is a quick and accurate alternative for forecasting value-at-risk. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|