Autor: |
Fan Xie, Chen Liang, Shigui Dai, Bo Shao, Huibao Huang, Jinhui Ouyang, Li Li, Eric Larose |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Earthquake Research Advances, Vol 3, Iss 1, Pp 100202- (2023) |
Druh dokumentu: |
article |
ISSN: |
2772-4670 |
DOI: |
10.1016/j.eqrea.2022.100202 |
Popis: |
Relative seismic velocity change (dv/v) is important for monitoring changes in subsurface material properties and evaluating earthquake-induced rock slope damage in a geological disaster-prone region. In this paper, we present a rapid damage assessment on three slow-moving rock slopes by measuring dv/v decrease caused by the 2022 MS 6.8 Luding earthquake in Southwest China. By applying the stretching method to the cross-correlated seismic wavefields between sensors installed on each slope, we obtain earthquake-induced dv/v decreases of ∼2.1%, ∼0.5%, and ∼0.2% on three slopes at distances ranging from ∼86 to ∼370 km to the epicenter, respectively. Moreover, based on seismic data recorded by 16 sensors deployed on the rock slope at a distance of ∼370 km away from the epicenter, a localized dv/v decease region was observed at the crest of the slope by calculating the spatial dv/v images before and after the earthquake. We also derive an empirical in situ stress sensitivity of −7.29✕10−8/Pa by relating the dv/v change to the measured peak dynamic stresses. Our results indicate that a rapid dv/v assessment not only can help facilitate on-site emergency response to earthquake-induced secondary geological disasters but also can provide a better understanding of the subsurface geological risks under diverse seismic loadings. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|