Curvature Invariants of Statistical Submanifolds in Kenmotsu Statistical Manifolds of Constant ϕ-Sectional Curvature

Autor: Simona Decu, Stefan Haesen, Leopold Verstraelen, Gabriel-Eduard Vîlcu
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Entropy, Vol 20, Iss 7, p 529 (2018)
Druh dokumentu: article
ISSN: 1099-4300
DOI: 10.3390/e20070529
Popis: In this article, we consider statistical submanifolds of Kenmotsu statistical manifolds of constant ϕ-sectional curvature. For such submanifold, we investigate curvature properties. We establish some inequalities involving the normalized δ-Casorati curvatures (extrinsic invariants) and the scalar curvature (intrinsic invariant). Moreover, we prove that the equality cases of the inequalities hold if and only if the imbedding curvature tensors h and h∗ of the submanifold (associated with the dual connections) satisfy h=−h∗, i.e., the submanifold is totally geodesic with respect to the Levi–Civita connection.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje