Autor: |
Simona Decu, Stefan Haesen, Leopold Verstraelen, Gabriel-Eduard Vîlcu |
Jazyk: |
angličtina |
Rok vydání: |
2018 |
Předmět: |
|
Zdroj: |
Entropy, Vol 20, Iss 7, p 529 (2018) |
Druh dokumentu: |
article |
ISSN: |
1099-4300 |
DOI: |
10.3390/e20070529 |
Popis: |
In this article, we consider statistical submanifolds of Kenmotsu statistical manifolds of constant ϕ-sectional curvature. For such submanifold, we investigate curvature properties. We establish some inequalities involving the normalized δ-Casorati curvatures (extrinsic invariants) and the scalar curvature (intrinsic invariant). Moreover, we prove that the equality cases of the inequalities hold if and only if the imbedding curvature tensors h and h∗ of the submanifold (associated with the dual connections) satisfy h=−h∗, i.e., the submanifold is totally geodesic with respect to the Levi–Civita connection. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|