Popis: |
Trunk recognition is a critical technology for Camellia oleifera fruit harvesting robots, as it enables accurate and efficient detection and localization of vibration or picking points in unstructured natural environments. Traditional trunk detection methods heavily rely on the visual judgment of robot operators, resulting in significant errors and incorrect vibration point identification. In this paper, we propose a new method based on an improved YOLOv7 network for Camellia oleifera trunk detection. Firstly, we integrate an attention mechanism into the backbone and head layers of YOLOv7, enhancing feature extraction for trunks and enabling the network to focus on relevant target objects. Secondly, we design a weighted confidence loss function based on Facol-EIoU to replace the original loss function in the improved YOLOv7 network. This modification aims to enhance the detection performance specifically for Camellia oleifera trunks. Finally, trunk detection experiments and comparative analyses were conducted with YOLOv3, YOLOv4, YOLOv5, YOLOv7 and improved YOLOv7 models. The experimental results demonstrate that our proposed method achieves an mAP of 89.2%, Recall Rate of 0.94, F1 score of 0.87 and Average Detection Speed of 0.018s/pic that surpass those of YOLOv3, YOLOv4, YOLOv5 and YOLOv7 models. The improved YOLOv7 model exhibits excellent trunk detection accuracy, enabling Camellia oleifera fruit harvesting robots to effectively detect trunks in unstructured orchards. |