Hydrothermal carbonization pretreatment makes a remarkable difference in activation of rice and lettuce in food waste

Autor: Lijun Zhang, Yifan Sun, Chao Li, Shu Zhang, Mortaza Gholizadeh, Xun Hu
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Green Chemical Engineering, Vol 5, Iss 3, Pp 348-363 (2024)
Druh dokumentu: article
ISSN: 2666-9528
43058779
DOI: 10.1016/j.gce.2023.08.004
Popis: Cooked rice and the vegetables like lettuce are common kitchen waste, which are carbonaceous materials and have the potential as feedstock for the production of activated carbon. Cooking is similar to hydrothermal treatment (HTC), which might impact the subsequent activation of kitchen waste. In this study, the HTC of lettuce, rice, or their mixture and the activation of the resulting hydrochars were conducted. The results indicated that cross-polymerization between the N-containing organics from lettuce and the sugar derivatives from rice took place in their co-HTC, which significantly increased the hydrochar yield. Activation of the hydrochar from the co-HTC generated the AC with a yield of 2 times that from direct activation of mixed lettuce/rice. However, the co-HTC facilitated aromatization, reducing reactivity with K2C2O4 in activation and producing the AC with main micropores and low specific surface area. Activation of the hydrochar from HTC of rice followed the above trend, while that from lettuce was the opposite. The organics in lettuce were thermally unstable and could not undergo sufficient aromatization. The activation of hydrochar from HTC of lettuce thus generated the AC with the lowest yield, but the highest specific surface area (1684.9 m2/g), abundant mesopores, and superior capability for adsorption of tetracycline. However, the environmental impacts and energy consumption for the production of AC from the hydrochar of lettuce were higher than that from hydrochar of co-HTC.
Databáze: Directory of Open Access Journals