Robust error estimation based on factor-graph models for non-line-of-sight localization

Autor: O. Arda Vanli, Clark N. Taylor
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: EURASIP Journal on Advances in Signal Processing, Vol 2022, Iss 1, Pp 1-26 (2022)
Druh dokumentu: article
ISSN: 1687-6180
DOI: 10.1186/s13634-022-00837-8
Popis: Abstract This paper presents a method to estimate the covariances of the inputs in a factor-graph formulation for localization under non-line-of-sight conditions. A general solution based on covariance estimation and M-estimators in linear regression problems, is presented that is shown to give unbiased estimators of multiple variances and are robust against outliers. An iteratively re-weighted least squares algorithm is proposed to jointly compute the proposed variance estimators and the state estimates for the nonlinear factor graph optimization. The efficacy of the method is illustrated in a simulation study using a robot localization problem under various process and measurement models and measurement outlier scenarios. A case study involving a Global Positioning System based localization in an urban environment and data containing multipath problems demonstrates the application of the proposed technique.
Databáze: Directory of Open Access Journals